Regular Exercise for the Fontan Circulation: How important is it?

Rachael Cordina

Staff Specialist

Adult Congenital Heart Disease Service Royal Prince Alfred Hospital and University of Sydney Australia

The Fontan Circulation

Systemic vascular resistance=SVR Pulmonary vascular resistance=PVR

Courtesy of Marc Gewillig

A Fontan Myopathy?

Relative Appendicular Lean Mass Index T-Score

Figure 1 A T-score represents the number of SDs from the young normal reference mean. A value <-2.0 represents marked muscle wasting, defined as in the sarcopenic range.

Mean T-score was -1.47 ± 0.21

Mean Z-score was markedly abnormal -1.46 ± 0.22

(p<0.0001)

Cordina et al. Heart 2013

A Fontan Myopathy?

Congenital heart disease

ORIGINAL ARTICLE

Lean mass deficits, vitamin D status and exercise capacity in children and young adults after Fontan palliation

Catherine M Avitabile,¹ Mary B Leonard,^{2,3,4} Babette S Zemel,⁴ Jill L Brodsky,⁵ Dale Lee,⁶ Kathryn Dodds,¹ Christina Hayden-Rush,¹ Kevin K Whitehead,^{1,4} Elizabeth Goldmuntz,^{1,4} Stephen M Paridon,^{1,4} Jack Rychik,^{1,4} David J Goldberg^{1,4}

Heart 2014

A Fontan Myopathy?

The ability of skeletal muscle to extract oxygen during exercise and post-exercise reoxygenation is abnormal.

Inai *et al.* American Journal of Cardiology 2004

Important skeletal muscle afferent nerves that control blood flow and other autonomic responses are impaired in Fontan.

Brassard *et al.* International Journal of Cardiology 2006

After 8 weeks of aerobic and light resistance training, ergoreceptor function normalised.

Can the muscle pump be augmented?

- We hypothesised that resistance training to augment the peripheral muscle pump in subjects with a Fontan circulation might improve:
 - Cardiac filling
 - Stroke volume and
 - Exercise capacity
- 11 adults (mean 31 years, 2 females, 6 trainers and 5 controls) were recruited
- 3 days/week of high-intensity total body resistance training for 20 weeks. Carefully trained and supervised

Strength increased by $43 \pm 7 \%$ (p=0.002)

Peak VO_2 increased by 10% (p=0.03)

fonta

Respiratory Dependence in Fontan

а

Respiratory Dependence in Fontan

а

Effects of Training on Tolerance to Inspiratory Stress Assessed at Free Breathing Real-Time MRI

Real time free-breathing MRI

Aerobic training can also improve exercise capacity

	Mean Age (yr ± SD)	n	Training Design	Results
Minamisawa e <i>t al.</i> 2001	19 ± 4	16	2-3 months home-based aerobic exercise (60-80% peak HR) Uncontrolled	\Box VO ₂ (7%) O ₂ pulse tended to improve (5%)
Rhodes <i>et al</i> . 2005	12 ± 2	11/16 Fontan	12 weeks aerobic (game-based) + light resistance Uncontrolled	□VO ₂ (22%) and O ₂ pulse (18%)
Opocher <i>et al</i> . 2005	9 ± 1	10	8 months of aerobic home-based training (up to 70% VO _{2peak}) Uncontrolled	□VO ₂ (20%) and O ₂ pulse (16%)
Longmuir <i>et al.</i> 2013	9 ± 2	61	12 month physical activity prescription vs. education and game-based intervention	Both \Box VO ₂ (5%) and motor skills Maintained \Box in physical activity at 2y

200 patients, no adverse events What are the mechanisms that drive improvement?

The Fontan Circulation

Systemic vascular resistance=SVR Pulmonary vascular resistance=PVR

Courtesy of Marc Gewillig

Fontan - Pulmonary Endothelial Function

There is evidence for pulmonary endothelial dysfunction that probably relates to reduced flow and pulsatility in the vascular bed.

> Kurotobi et al., JTCVS 2001 Khambadkone et al., Circ 2003.

Kurotobi et al. JTCVS 2001

Fontan - Pulmonary Artery Growth

Pulmonary artery growth is probably attenuated or even ceases at Fontan completion

Ouvroutski et al. Annals of Thoracic Surg 2009

Normal flow profile in pulmonary artery

Fontan flow profile

Fontan – The Peripheral Muscle Pump

Cordina et al. Under Review

TABLE 1. Fontan subject characteristics

pa

			All $(N = 14)$
		Sex (female:male)	7:7
		Age (y)	24 ± 5 (16-34)
		BMI (kg/m ²) 2	3.0 ± 3.0 (16.7-27.8)
		Predominant ventricular morphology	
		Left	12 (86)
		Right	1 (7)
		Biventricular	1 (7)
		Dominant cardiac defect	
		Tricuspid atresia	10(71)
		Double-inlet left ventricle	2 (14)
		Complex double-outlet right	2 (14)
		ventricle	
		Type of TCPC repair	
		Atriopulmonary connection	3 (21)
		Intracardiac lateral tunnel	7 (50)
		Extracardiac conduit	3 (21)
64-3008-30584v		Extracardiac conduit post-APC	1 (7)
The Journ	al of Thoracic and Cardiovas	conversion*	
ACREATE THE COULT		Patent fenestration	5 (36%)
2 - 2 - 2 - 2 - 2	Available celles 27 Ociobes 2047	Pacemaker	
- W.S	Available online 27 October 2017	AAI (not paced during exercise)	1.00
	to Barrier Arrest della della constante	DDDR (100% ventricular pacing)	1 (7)
FLSEVIER	In Press, Accepted Manuscript	DDDR (atrial pacing during	1(7)
		exercise)*	- 1.7
		Are at Fontan completion (v)	4 ± 2 (2-11)
		Survival encoderation Easter	15+1(0.1)
Suner-Fontan' Is	: it nossihle?	surgical procedures pre-roman	$1.5 \pm 1 (0.5)$
Super-roman. 13		compretion	
		Surgical or percutaneous interventions post-Fonta	1
Rachael Cordina MBBS PhD	FRACP a, b, Karin du Plessis PhD c, d, Derek	Electrophysiologic procedure and	3 (21)
	4 - 6 -	ABC conversion to extracardiac	1.00
d'Udekern MD PhD FRACS ^c	, e, e X 🖾	conduit and anicardial	100
		nacemaker implantation	
		Epicardial pacemaker implantation	2 (14)
		Fenestration post-Fontan and	1(7)
		subsequent closure	
		Sustained arrhythmia	3 (21)
		Other comorbidities	- 47
		Tune L disbates	1.75
		Type I diadetes	1.07
		Warfarin/2004C	7 (50)
		Aspirin	7 (50)
		ACEI/ARB	2 (14)
		Setalel	1 (7)
		Pakaandia maha	1(1)
		Echocardiography Menteigador materia function	
		Normal	12 (86)
		Mild to moderate impairment	2 (14)
		Atrioventricular valve recurritation	2 (14)
		None-trivial	8 (57)
		Mild	6 (43)

- Systemic endothelial function
- Systolic function
- Confidence
- Body image
- Cardiovascular risk
- Concentration

Regular Exercise for the Fontan Circulation:

How important is it?

Regular Exercise for the Fontan Circulation:

How?

Conclusions

- A Fontan myopathy exists that has important implications for the peripheral muscle pump and venous return
- Regular exercise to maintain peripheral muscle bulk improves cardiac preload and exercise capacity
- Periodically increasing pulmonary blood flow with exercise may have beneficial effects on pulmonary vascular physiology
- Frequent vigorous exercise is central to a wellfunctioning Fontan circulation

rachael.cordina@sydney.edu.au

Impact of Inspiratory Muscle Training in Fontan

Laohachai...Ayer, JAHA 2017

Impact of Inspiratory Muscle Training in Fontan

Table 8. Change in Stroke Volume and Ejection FractionBetween Rest and Peak Exercise

Parameter	Rest, Mean±SD	Peak Exercise, Mean±SD	P Value
Pre-IMT stroke volume, mL	64.0±12.7	72.4±12.6	0.003
Pre-IMT ejection fraction, %	50.1±3.9	56.7±6.1	0.001
Post-IMT stroke volume, mL	63.7±10.4	68.2±9.0	0.03
Post-IMT ejection fraction, %	52.8±6.1	55.3±2.1	0.02

IMT indicates inspiratory muscle training.

Laohachai...Ayer, JAHA 2017

Exercise limitation in the Fontan circulation

No subpulmonary ventricle Structural issues Chronotropic incompetence Diastolic dysfunction (Systolic dysfunction)

Systemic endothelial dysfunction

Pulmonary endothelial dysfunction Reduced lung volumes Desaturation Respiratory muscle dysfunction Poor pulmonary vascular development

Reduced skeletal muscle mass and function

Iron deficiency